Variational Discretization and Adaptive Mixed Methods for Integro-Differential Optimal Control Problems

نویسندگان

  • Zuliang Lu
  • Z. Lu
چکیده

In this paper, we study the variational discretization and adaptive mixed finite element methods for optimal control problems governed by integro-differential equations. The state and the co-state are discretized by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discretized. We derive a posteriori error estimates for the coupled state and control approximation. Such a posteriori error estimates can be used to construct more efficient and reliable adaptive mixed finite element method for the optimal control problems. Finally, we introduce an adaptive algorithm to guide the mesh refinement. Mathematics Subject Classification: 49J20, 65N30

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Adaptive Mixed Methods and Variational Discretization for Nonlinear Optimal Control Problems

In this paper, we study the adaptive mixed finite element methods and variational discretization for optimal control problems governed by nonlinear elliptic equations. The state and the co-state are discretized by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discretized. Then we derive a posteriori error estimates both for the coupled state and the control ...

متن کامل

A posteriori error estimates of mixed finite element methods for general optimal control problems governed by integro-differential equations

*Correspondence: [email protected] 1School of Mathematics and Statistics, Chongqing Three Gorges University, Chongqing, 404000, P.R. China 2College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan, 411105, P.R. China Full list of author information is available at the end of the article Abstract In this paper, we study the mixed finite element methods for general convex optima...

متن کامل

Usage of the Variational Iteration Technique for Solving Fredholm Integro-Differential Equations

Integral and integro-differential equations are one of the most useful mathematical tools in both pure and applied mathematics. In this article, we present a variational iteration method for solving Fredholm integro-differential equations. This study provides an analytical approximation to determine the behavior of the solution. To show the efficiency of the present method for our proble...

متن کامل

A priori error estimates for higher order variational discretization and mixed finite element methods of optimal control problems

* Correspondence: zulianglux@126. com College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, PR China Full list of author information is available at the end of the article Abstract In this article, we investigate a priori error estimates for the optimal control problems governed by elliptic equations using higher order variational discretization and mixed finite elem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011